f(x)=x,x∈(-π,π).展开成傅里叶级数,要解答步骤,在线跪等
来源:网络收集 点击: 时间:2024-05-01【导读】:
对f(x)做周期为2π的奇拓展,将f(x)拓展为实数域上的奇函数,由狄利克雷定理可知f(x)可以拓展为傅里叶级数。
设f(x)=a_{0}+ Sigma(a_{n}cosnx)+Sigma(b_{n}sinnx);(Sigma从1到无穷求和)
两边乘以cosnx,在(-π,π)上求定积分可得a_{n}=0;
等式两边在(-π,π)上求定积分可得a_{0}=0;
两边乘以sinnx,在(-π,π)上求定积分可得b_{n}=(-1)^{n+1}2/n;
最后一步的计算过程中(sinnx)^2在(0,π)上的定积分为π/2;
xsinnx在(0,π)上的定积分为}=(-1)^{n+1}π/n。
傅里叶级数来源:
法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。
他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.ff371.cn/art_644922.html
上一篇:洛克王国历险之证怎么得
下一篇:ral7043色怎么调