广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    m=n是n维向量组线性相关的什么条件

    来源:网络收集  点击:  时间:2024-05-04
    【导读】:

    m=n是n维向量组线性相关的条件:实质就是求齐次方程组的非零解。

    定理中,A行满秩,=A的行向量组线性无关,但它的列向量组却不一定,若rn,其列向量组一定线性相关(个数大于维数)。如当m=1时,取α1=(1,0)T,β1=(0,1)T均为单个非零向量是线性无关的,但β1不能用α1线性表示,必要性不成立。

    定义

    设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.ff371.cn/art_671802.html

    ©2019-2020 http://www.ff371.cn/ 国ICP备20009186号06-23 04:46:23  耗时:0.025