为什么两个幂级数相加后收敛半径是“至少为”原来两个收敛半径的最小值,难道不应该是恒等于吗
来源:网络收集 点击: 时间:2024-07-05【导读】:
不是恒等于,比如将一个收敛半径为一的一个级数,乘一个负号后和原来那个级数加在一起,得到零级数,它的收敛半径是正无穷大。如果两个级数收敛半径R相等的情况下,在边界的位置和一段小区间内,他们同时发散,而发散级数加发散级数可能会收敛。这就是为什么相加后区间可能会扩大但是如果半径不相同,那就是最小值了。
数学:
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.ff371.cn/art_932466.html