行最简形矩阵是怎么定义的
来源:网络收集 点击: 时间:2024-04-20【导读】:
行最简形矩阵是指线性代数中的某一类特定形式的矩阵。
在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。
行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。
扩展资料
下列三种变换称为矩阵的行初等变换:
1、对调两行;
2、以非零数k乘以某一行的所有元素;
3、把某一行所有元素的k倍加到另一行对应元素上去。
将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。
参考资料来源:百度百科-行最简形矩阵
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.ff371.cn/art_557460.html
上一篇:建行生活怎么注销账号
下一篇:智能体育运动监测方案介绍